ИЗМЕРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ОПРЕДЕЛЕНИЯ РАДИАЦИОННЫХ ПАРАМЕТРОВ ТРО, ИЗВЛЕКАЕМЫХ ИЗ ТЕХНОЛОГИЧЕСКИХ ШАХТ И БАССЕЙНОВ ВЫДЕРЖКИ 1, 2 БЛОКОВ БЕЛОЯРСКОЙ АЭС

> Аваев В.Н., Васюхно В.П., Яшников А.И ОАО «Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля», г. Москва

Обобщенная структурная схема комплекса

Схема гамма-канала Тракта 1 (НПЦ «Аспект»)

Измерительный ТРАКТ 1 обеспечивает:

измерение МЭД гамма-излучения по высоте извлекаемого объекта ТРО,

проведение предварительной классификации ТРО по МЭД гаммаизлучения в диапазоне 0,1-10⁷ мкЗв/ч;

измерение плотности потока нейтронов по высоте объекта ТРО от 10⁻³ н/(см²с) при МЭД гамма-излучения 1,0 Зв/ч;

определение положения датчиков относительно извлекаемого объекта с помощью лазерного дальномера типа DIMETIX DLS-В 300

Стальной коллиматор для гамма-канала

Вклад в МЭД от части объекта, находящегося в «прямой видимости» датчиком в коллиматоре (около 30 см) составляет ~ 60%, а от части равной 100 см, составляет в среднем ~90 %.

Согласно СПОРО-2002 производится предварительная сортировка ТРО по категориям (низкоактивные, среднеактивные, высокоактивные)

Схема нейтронного канала Тракта 1 (НПЦ «Аспект»)

Батарея из 10 счетчиков

Нейтронные счетчики в замедлителе

В

Стойка измерительного тракта 1

Чувствительность измерительной системы будет составлять 1400 импульс/(н/см²).

Нейтронный канал ТРАКТА 1 Масса урана (в граммах) оценивается по формуле:

$$M = \frac{N - \sum_{i} \delta_{i}}{\sum_{i} (\xi_{i} \times \Phi_{i})}$$

где: *N* – измеренная интенсивность импульсов от n счетчиков, имп/с; - чувствительность i-ого счетчика, определенная при калибровке, имп/(н/см²); - иитенсивность фоновых регистраций i-ым счетчиком, 0,1 имп/с; *Ф*_i - расчетное значение плотности потока нейтронов в месте расположения i-ого счетчика (по программе MCNP) от одного грамма урана в исследуемом объекте, н/(см²×с×г).

Энерговыработка, МВт×сут/кгU	2	4	10	26
Спонтанное деление н/сUг	0,03,	0,09	0,46	2,0
Реакция (α,n) н/сUг	0,1	0,2	0,6	3,4

Нижний предел определения наличия урана определялся для графитовых блоков 24х24х100 см. Стационарное положение. Время измерения 1000 с. Масса 5-250 г. Скорость перемещения 2,6 м/мин. Время измерения 70 с. Масса 30-2600 г.

Паспортизатор СКГ-02 (НПЦ «Аспект»)

1 – системный крейт 2 – блок коммутации и управления 3 – ограждение

- 4 бочка с РАО 5 датчик присутствия 6 гамма-дозиметр БДГ-02
- 7 поворотная платформа с тензовесами 8 основание
- 9 мотор-редуктор 10 блок спектрометра УДС-Г-40х40-485
- 11 коммутационная коробка 12 стойка 13 весовой терминал

Характеристики ГАММА ПАСПОРТИЗАТОРА

Размеры первичных упаковок 100х100х60 см

Заполнение графит (0.5-1,6 г/см³), сталь(0,2-2.0 г/см³)

Толщина стальной стенки первичной упаковки бралась 5 мм.

Основные источники Со-60 и Cs-137.

Для выбора типа спектрометра по программе MCNP были проведены расчеты групповых потоков гамма-квантов в месте расположения детектора спектрометра.

Проведенные расчеты показали:

• изменение плотности материалов, находящихся в первичных упаковках не приводит к изменению спектрального состава излучения;

• увеличение плотности материала приводит к уменьшению потока гамма-квантов при одинаковой активности первичных упаковок: максимальное различие для упаковок со сталью составило 3 раза, а для графита- 2.3 раза;

• рассеянное излучение во многом определяет загрузку спектрометра, так как вклад рассеянного излучения в полный поток гамма-квантов для контейнеров со сталью составляет (45-65)%, а для контейнеров с графитом (60-70)%;

В спектральном распределении наблюдается резкое снижение потоков гамма-квантов с энергией меньшей 100 кэВ.

Возможность определения активности Am-241.

Соотношение активностей Cs137 и Am-241 (программа ORIGEN2) в зависимости от энерговыработки изменяется от 20 до 5000. Расчеты показали, что измерение активности Am-241 в первичных упаковках в присутствии Cs-137 практически невозможно даже с применением в качестве спектрометра ППД ОЧГ.

Определена возможности спектрометра с детектором NaJ(TI) измерять активность Cs-137 в присутствии Co-60. Расчеты показали, что определение активности Cs-137, которая составляет 10% от общей удельной активности, возможно с погрешностью не более 30% при продолжительности измерения 200 с.

Амплитудное распределение, рассчитанное для случая, когда активность Cs-137 составляет 50% от общей активности Диапазоны измерения с использованием свинцовых экранов составляет дляCs-137 от 25-10¹² Бк/кг. Для Co-60 20-10⁹ Бк/кг.

Нейтронный паспортизатор

Пассивно-активные паспортизаторы определяют массу ЯМ в следующих четырех режимах работы:

- по измеренной интенсивности импульсов от нейтронов спонтанного деления и реакции (α,n);

- по измеренной интенсивности совпадений от спонтанно делящихся нуклидов;

- по измеренной интенсивности совпадений от делений под воздействием внешнего источника нейтронов;

- по измеренному количеству запаздывающих нейтронов от деления под воздействием внешних источников нейтронов.

Характеристики генератора ИНГ-031(ВНИИА им.Н.Л.Духова)

Поток нейтронов, 3.1010 нейтр/с

Длительность нейтронного импульса, 0,8 мкс

Частота, 1-100 Гц

Ресурс, 100 ч

Потребляемая мощность не более700 Вт

Габаритные размеры излучателя нейтронов:

- диаметр130 мм

- длина 950 мм

Паспортизатор состоит из 3-х подвижных детекторных секций (по одной на три боковые стороны первичной упаковки с ТРО размерами 1000 х 1000 х 600 мм).

Каждая детекторная секция состоит, в свою очередь, из 4-х взаимозаменяемых модулей.

Внешние габариты ~1600х1600х1300 мм Количество счетчиков 204-312 штук.

Эскиз нейтронного паспортизатора

«Пассивный» режим работы установки

первом режиме измеряется интенсивность счета нейтронов B спонтанного деления Pu-240 и нейтронов, образовавшихся в (α,n) реакции Зависимость время измерения от соотношения ϕ_{240}/ϕ_{dot} (Статистическая погрешность 25 %)

- при Ф₂₄₀/Ф_{фон}= 0,5 время измерения будет составлять ~10 с;
 при Ф₂₄₀/ Ф_{фон}= 0,2 время измерений будет составлять ~1 мин;
 при Ф₂₄₀/ Ф_{фон}=0,1 время измерений будет составлять ~4 мин.

Зависимость определяемой массы ЯМ с погрешностью 50% от продолжительности измерения для выгоранием 2 МВт×сут/кг U, г

Зависимость определяемой массы ЯМ с погрешностью 50% от продолжительности измерения для выгоранием 2 МВт×сут/кг U, г

Масса ЯМ, г	10	20	50	100	200
Время измерения	3,4 ч	50 мин	8 мин	2 мин	36 c

Первый режим работы установки позволит определить наличие (20-30) г ЯМ в первичной упаковке размером 100х100х60 см при продолжительности измерений (30÷50) мин.

Во втором режиме масса делящихся ЯМ определяется по количеству совпадений от спонтанного деления

Ссп = Сп – Ссл

где: Ссп – интенсивность двойных совпадения от спонтанного деления, имп/с; Сп - полная интенсивность двойных совпадений, имп/с; Ссл - интенсивность случайных двойных совпадений, имп/с. Интенсивность случайных совпадений (имп/с) определяется как:

C_{сл}= N×(1-exp(-N×t))

где t- временное окно ~60 мкс.

 $N=\xi \times n \times (\Phi_{ed} \times \vartheta \times M + \Phi \phi o H)$

ξ-чувствительность одного нейтронного счетчика;

n - количество счетчиков;

Ф_{ед}- плотность потока нейтронов в местах расположения датчиков, нормированная на 1 нейтрон источника в секунду;

9 - интенсивность нейтронов в 1 г урана

М –масса урана в упаковке с ТРО

Ффон- фоновый поток

Статистическая погрешность в определении массы ЯМ:

$$\eta = \frac{\sqrt{(N_{\partial e_{\pi}} \times g) + C_{CT}} + \sqrt{C_{CT}}}{\sqrt{T} \times N_{\partial e_{\pi}} \times g}$$

где Т-время измерения, с;

g-эффективность регистрации двойных совпадений от нейтронов деления N_{дел}=Φ_{ед}× ξ·×n × θд × М θд - интенсивность нейтронов в 1 г урана от спонтанного деления Зависимость времени измерения от статистической погрешности измерения количества двойных совпадений от выгорания и массы ЯМ, %

Масса, г	Выгорание,	Погрешность,%				
	<u>мвт·сут</u> кг U	5	10	20	50	
10	2	199 ч	51 ч	12,8 ч	2,0 ч	
	4	21 ч	5,2 ч	1,3 ч	12,7 мин	
	10	2ч	30 мин	8 мин	75 c	
	26	13 мин	32 мин	49 c	8 c	
20	2	54 ч	13 ч	3,4 ч	0,53 ч	
1.0	4	8,7 ч	2,1 ч	32 мин	5,2 мин	
	10	57,6 мин	14 мин	3,5 мин	34 c	
	26	<u>6 мин</u>	90 c	22 c	2 c	
50	2	10,6 ч	2,7 ч	40 мин	6,4 мин	
	4	2ч	29,4 мин	7 <mark>,4</mark> мин	71 c	
	10	13 мин	3.2 мин	49 c	8 c	
100	2	3,4 ч	50 мин	13 мин	2 мин	
	4	45 мин	11 мин	<u>3 мин</u>	27 c	
	10	5,4 мин	80 c	20 c	3 c	
200	2	1,2 ч	18 мин	4,5 мин	43 c	
	4	22 мин	5,4 мин	80 c	13 c	
	10	150 c	38 c	10 c	2 c	

Второй режим работы установки позволяет за время измерения ~30 мин: - определить 10 г ЯМ с выгоранием более 4 МВт×сут/кгU;

- для ЯМ с выгоранием 2 МВт×сут/кгU минимально определяемая величина массы ЯМ составляет 50 г.

«Активный» режим работы установки

Источники: AmLi (α,n)-300 кэВ, Cf-252-спектр нейтронов деления, нейтронный генератор- энергия 14 МэВ.

Режим счета кратности совпадений

Упаковка 100х100х60 см (графит или сталь 1 г/см³).

Уран массой 100 г обогащение 3%.

Распределение равномерное

Расчеты выполнялись по программе МСNP

Отношение потоков нейтронов от источника к потокам от нейтронов деления в месте расположения датчиков

Материал	Энергия нейтронов источника					
заполнения	300 кэВ	2 МэВ	14 Мэ В			
Графит	8,0×10²	$1,0 \times 10^{3}$	$2,0\times10^{3}$			
сталь	8,6×10⁵	5,9×10 ⁴	1,2×10 ⁴			

Необходимым условием определения этим методом массы ДМ является наличие источника, интенсивность которого создает в месте расположения датчиков поток нейтронов деления, сопоставимый с потоком от спонтанного деления Pu-240.

При этом условии источник с энергией 300 кэВ (AmLi(a,n)) должен иметь интенсивность 2,6×10⁶ н/с.

Зависимость времени измерения от массы ЯМ, определяемой с статистической погрешностью 50%

Масса, г	10	20	30	60	100
Время измерения	140 ч	34 ч	15 ч	3,9 ч	1,4 ч

Режим счета полного количества запаздывающих нейтронов

Интенсивность источника должна быть такой, чтобы поток запаздывающих нейтронов в месте расположения датчиков превышал поток нейтронов от спонтанного деления Pu-240 и реакции (α,n).

Возможность измерения потоков запаздывающих нейтронов определяется следующими параметрами:

- суммарной плотностью потока нейтронов в месте расположения датчиков от спонтанного деления, реакции (α,n) и фонового излучения;

- мощностью ИНГ и режимом его работы;

- энергией нейтронов ИНГ;

- временем жизни мгновенных нейтронов в измерительной системе (которое определяет начало измерения запаздывающих нейтронов).

Генератор типа ИНГ-031, Энергия 14 МэВ.

Интенсивность 3.10¹⁰ н/с.

Размер 100х100х60 см, Плотность 1 г/см³

Материал графит, сталь

Масса урана 1, 10 и 1500 г.

Два варианта размещения ИНГ:

- ИНГ размещается в центре нижней поверхности упаковки, а счетчики - на четырех боковых поверхностях упаковки;

- ИНГ размещается в центре боковой поверхности упаковки, а счетчики на трех боковых поверхностях упаковки.

Результаты расчетов показали, что:

- в диапазоне массы урана от 1 до 1500 г существует прямо пропорциональная зависимость между массой урана и количеством делений;

- для упаковок со сталью 93% делений происходит на ядрах U-238, а для упаковок с графитом – 46%.

1 – с запаздывающими нейтронами
 2 – без запаздывающих нейтронов

Зависимость количества нейтронов от времени после окончания работы ИНГ для графитового заполнения. Масса урана 1 г.

Момент начала измерений определяется соотношением между потоками запаздывающих нейтронов и мгновенных. Для упаковок с графитом потоки нейтронов практически полностью определяются запаздывающими нейтронами для времен больших 0,1 с. Для упаковок со сталью указанное время составляет 0,01 с.

Результаты расчетов показали, что:

в диапазоне массы урана от 1 до 1500 г существует прямо пропорциональная зависимость между массой урана и количеством делений; для упаковок со сталью 93% делений происходит на ядрах U-238, а для упаковок с графитом – 46%.

1 – запаздывающие нейтроны; 2 – фон; 3 – Ри-240 + реакция (α, n); 4 – сумма фон + Ри-240 + реакция (α, n)

Зависимость плотности потока нейтронов от времени после окончания облучения для массы урана равной 1 г. Заполнение графит 1 – запаздывающие нейтроны; 2 – фон; 3 – Ри-240 + реакция (α, n); 4 – сумма фон + Pu-240 + реакция (α, n)

Зависимость плотности потока нейтронов от времени после окончания облучения для массы урана равной 10 г Заполнение графит Оценка статистической погрешности в определении плотностей потоков запаздывающих нейтронов в зависимости от времени измерения проводилась для:

- максимального количества нейтронов от спонтанного деления и реакции (α,n) равного 6,0 (н/с·гU);

- средней плотности потоков нейтронов на поверхности упаковок;

- случая, когда ИНГ находится под упаковкой, количество счетчиков 300;

- случая, когда ИНГ находился на боковой поверхности, количество счетчиков 225;

- масса урана в упаковке 1 г.

Статистическая погрешность измерений в зависимости от времени измерения, %

Место расположение	Материал	Время измерения, с					
генератора	заполнения	1	2	5	10	20	50
Под упаковкой	Сталь, графит	13	7	6,5	6,3	6,5	8,2
На боковой поверхности	Сталь	57	30	29	30	33	46
На боковой поверхности	Графит	41	22	20	21	22	30

Спасибо за внимание

Василий Николаевич Аваев, ОАО «НИКИЭТ»