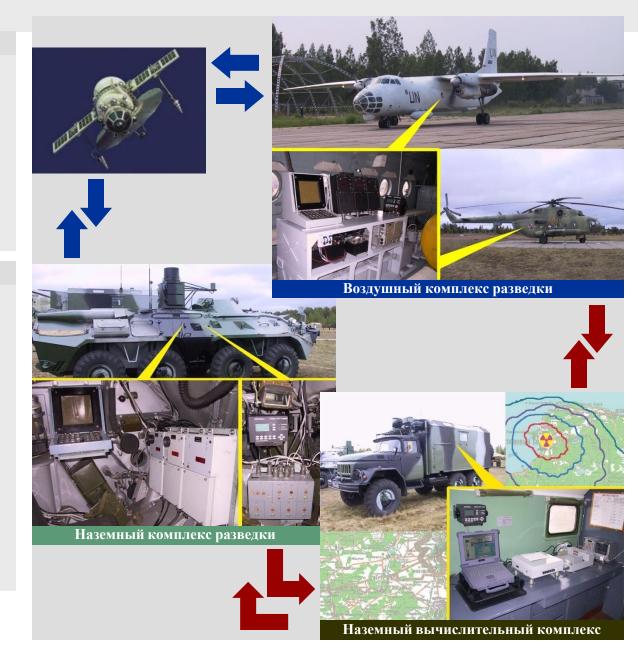


ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИИ ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ОПЫТНО-КОНСТРУКТОРСКИЙ ИНСТИТУТ РОБОТОТЕХНИКИ И ТЕХНИЧЕСКОЙ КИБЕРНЕТИКИ

Технологии ЦНИИ РТК высокоэффективного радиационного мониторинга для экологических целей и ликвидации последствия ядерных инцидентов


Комплекс радиационной разведки и поиска ионизирующих излучений [6]

Решаемые задачи

- Контроль за перемещением радиоактивных веществ и радиоактивных отходов
- Обеспечение готовности средств ликвидации чрезвычайных ситуаций к выполнению задач по предупреждению и ликвидации последствий чрезвычайных ситуаций

Назначение

- Определение границ радиоактивного заражения.
- Дистанционное измерение мощности экспозиционной дозы, обнаружение и определение местоположения точечных источников нейтронного и гаммаизлучений.
- Построение карты дозных полей с нанесенными на ней локальными источниками гамма и нейтронного излучения, документирование результатов радиационной разведки.

Воздушный комплекс разведки [5,6]

Назначение

- Определение границ радиоактивного заражения;
- > Уточнение спектрального состава;
- Измерение мощности экспозиционной дозы (МЭД);
- Поиск, обнаружение и определение местоположения точечных источников ионизирующих излучений.

Основные технические характеристики

Диапазон энергий регистрируемого гамма-излучения

Ширина полосы разведки

Производительность

Время непрерывной работы

Диапазон измерения МЭД 0,5...2,5 МэВ

0,5 км

 $50 \text{ км}^2/\text{ч}$

8 часов

10⁻⁵....10³ Р/ч

Программный комплекс [1,2]: цели и задачи

Цели

- Проектирование и градуировка аппаратуры для спектрометрического дистанционного радиационного мониторинга.
- Исследование полей гамма-излучения вблизи границы раздела полубесконечных сред.

Применение

Дистанционное определение МЭД. Поиск локальных источников. Определение нуклидного состава источника.

Специфика

Учет многообразия всех условий измерений как в полевом, так и в лабораторном варианте.

Результаты расчетов

Потоковые и дозовые характеристики поля излучения и аппаратурные спектры измерительных установок.

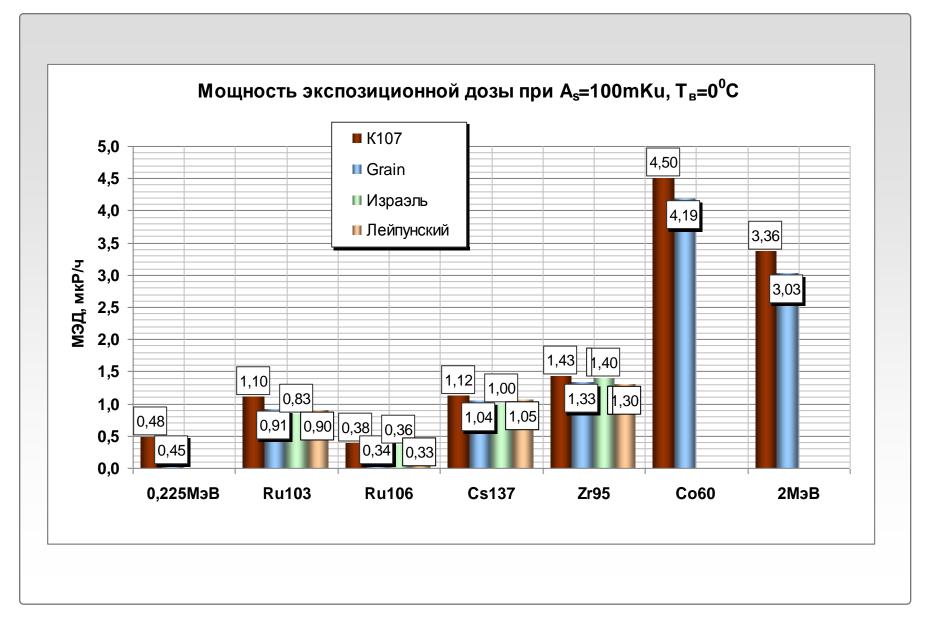
Научная проблематика

- Определение характеристик поля излучения для бесконечного и ограниченного источников в полубесконечных средах [3].
- Моделирование переноса излучения для сложных геометрических конструкций.
- Программный интерфейс.

Состав программного комплекса

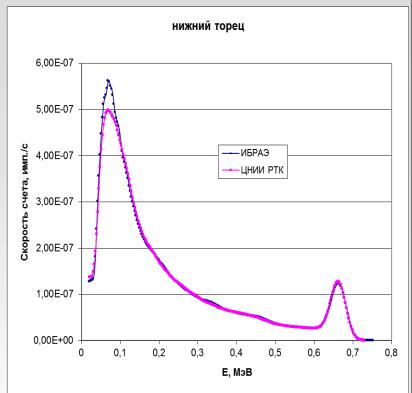
Программы семейства **GRAIN** (**GR**ound-**A**ir **IN**terface) предназначены для расчета характеристик поля фотонного излучения вблизи границы раздела воздух-конденсированная среда и базируются на методе Монте-Карло.

Среды: грунт, воздух, вода, бетон, кварцевый песок, железо.


Типы заглубления источника: дельта-источник, трапециидальный, экспоненциальный.

Программа **DINAM** для моделирования процесса переноса и регистрации излучения в сложных геометрических конструкциях.

Вспомогательные программы для контроля и визуализации условий и результатов расчетов.


Сравнение результатов расчетов программ GRAIN, K-107 [1] и [4] МЭД на высоте 1м для плоского источника на поверхности Земли

Сравнение результатов расчетов GRAIN1 + DINAM (ЦНИИ РТК) и МС NP (ИБРАЭ) Cs-137, заглубление 5 см, NaI 63×63 мм, высота 100 м.

Аппаратурные спектры . Время измерения 1 с.

Детектор: Nal (TI) Ø63×63 мм, высота 100 м.

Источник: Cs-137, плоский слой, заглубление 5 см, активность 1 Бк/см³

Дистанционные методы измерения мощности дозы

Классификация дистанционных методов измерения интегральных характеристик гамма-поля по первичным признакам [1]

Метод «Спектр-Доза» для воздушных измерений

Существует универсальная не зависящая от спектра источника нагрузочная функция **G(E)**, такая что для фиксированных условий измерений выполняется соотношение:

$$P = \int_{0}^{\infty} n(E)G(E)dE$$

где **Р** — мощность дозы;

n(E) — амплитуда аппаратурного спектра в единицу времени;

G(E) — операторная функция для области расположения детектора.

Рассмотрим задачу оценки МЭД на высоте h над поверхностью Земли по результатам измерения аппаратурного спектра на высоте H.

Для дистанционного измерения функция $G^H(E)$ определяется из системы уравнений:

$$\sum_{j=1}^{n} n_{ji}^H G_j^H = P_i^h \tag{4}$$

где $\mathbf{n_{ij}}^{\mathsf{H}}$ — элемент аппаратурной матрицы отклика блока детектирования, расположенного на высоте \mathbf{H} , для известным образом распределенного источника гамма-фотонов с энергией $\mathbf{E_{j}}$, $\mathbf{G_{j}}^{\mathsf{H}}$ — высотный коэффициент «Спектр-Доза» для \mathbf{j} -го интервала энергетической шкалы спектрометра;

 P_l^h — МЭД на высоте h = 1 м от поверхности земли, создаваемая этим источником

Многоканальный Метод «Спектр-Доза»: Принципы

Запишем (4) в матричном виде:

$$\mathbf{NG} = \mathbf{P},\tag{5}$$

где **N** — аппаратурная матрица 12×1024;

G — вектор (функция) «Спектр-Доза»;

Р — вектор мощностей доз от источников с различной энергией излучения

Критерии хорошей или «корректной» градуировки **G**:

- -для априорных (исходных) спектров результаты применения **G** должны давать точное решение;
- в исходных спектрах возможно наличие статистических флуктуаций, небольшие изменения в исходных спектрах в силу статистических флуктуаций или небольших изменений в условиях измерений аппаратурных спектров должны приводить к небольшим изменениям в результатах, (должна обеспечиваться устойчивость решения);
- изменения в энергетическом составе источника излучения должно приводить и к плавному изменению формы аппаратурного спектра и значению МЭД, что должно быть учтено в форме **G**.

Второе условие означает отсутствие осцилляций в **G**, третье – ее гладкость.

Многоканальный Метод «Спектр-Доза»: Решение [1]

Запишем (4) в матричном виде:

$$NG = P, (5)$$

где **N** — аппаратурная матрица 12×1024;

G — вектор (функция) «Спектр-Доза»;

Р — вектор доз от источников с различной энергией излучения

Помножив левую и правую части (5) слева на транспонированную матрицу ${\bf B}^{\sf T}$, получим:

$$\mathbf{N}^{\mathsf{T}}\mathbf{N}\mathbf{G} = \mathbf{N}^{\mathsf{T}}\mathbf{P},\tag{6}$$

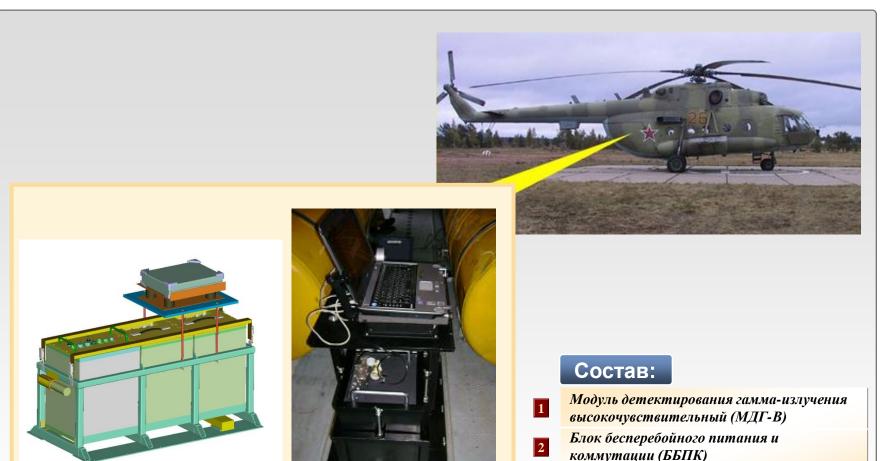
откуда

$$\mathbf{G} = (\mathbf{N}^{\mathsf{T}}\mathbf{N})^{-1}\mathbf{N}^{\mathsf{T}}\mathbf{P}.\tag{7}$$

Легко проверить путем подстановки, что

$$\mathbf{G} = \mathbf{N}^{\mathsf{T}} (\mathbf{N} \mathbf{N}^{\mathsf{T}})^{-1} \mathbf{P} \tag{8}$$

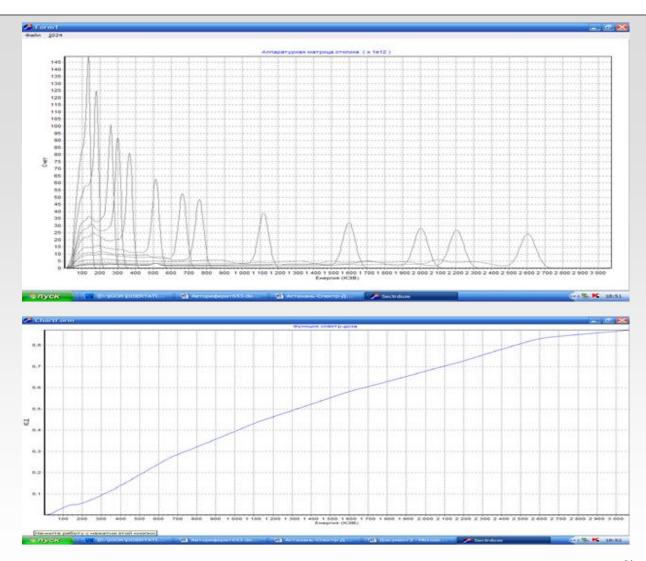
также является решением системы уравнений (11).


Решением системы (11) будет также

$$\mathbf{G}_{\mathbf{s}} = \mathbf{N}_{\mathbf{s}}^{\mathsf{T}} (\mathbf{N} \mathbf{N}_{\mathbf{s}}^{\mathsf{T}})^{-1} \mathbf{P}, \tag{9}$$

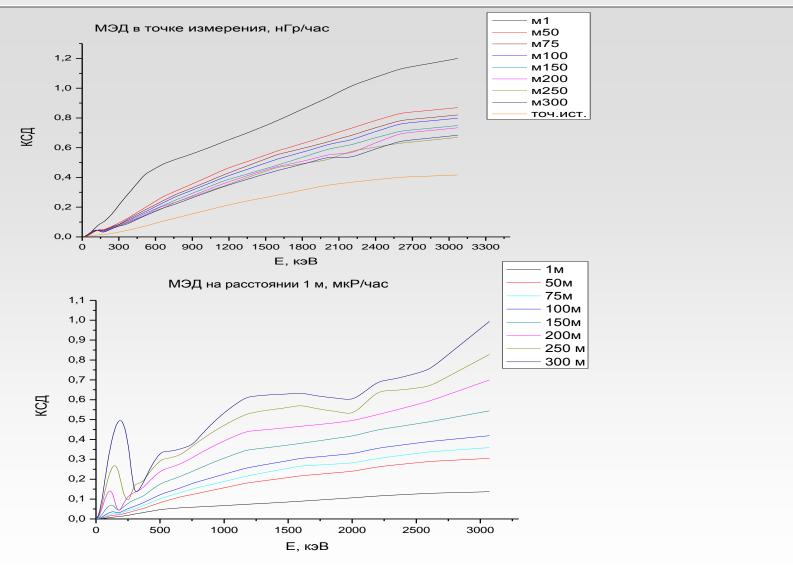
где N_s — матрица, полученная путем сглаживания строк (спектров) матрицы N

Аппаратура контроля радиационной обстановки (АКРО) для бортового вертолетного комплекса «Астрахань»

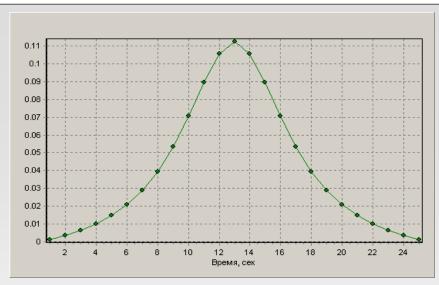

НАЗНАЧЕНИЕ: Аэрогамма-съемка местности с борта вертолета.

РЕШАЕМЫЕ ЗАДАЧИ: Измеряются спектры гамма-излучения и определяется МПД на борту вертолета и приведенной к высоте 1 м над поверхностью Земли.

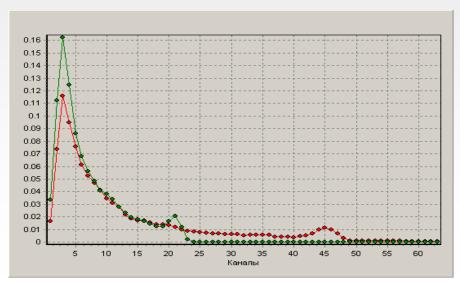
Пульт управления (ПУ)


АКРО: Аппаратурные спектры и функция "Спектр-Доза"

Исходные аппаратурные спектры для высоты полета 50м, детектор Nal Ø150×63 мм и дистанционная функция "Спектр-Доза" для расчета МПД на высоте 1м от бесконечного повехностного источника.



АКРО: Локальные функции "Спектр-Доза"



Локальные и дистанционные функции "Спектр-Доза" для различных высот полета и «метрологического режима» (параллельного потока).

Нормированная временная характеристика полезного сигнала µ

Нормированные спектральные характеристики полезного и фонового сигналов у

Для реализации алгоритма фильтрации полезного сигнала на фоне помехи построим следующую статистику:

$$X = \sum_{j=1}^{K} \sum_{i=1}^{N} \frac{\mu_{j}^{c}}{\mu_{j}^{\phi}} \frac{v_{ij}^{c}}{v_{i}^{\phi}} n_{ij}$$

где К – величина временного окна, в котором проводится скользящее суммирование,

N – количество энергетических каналов гамма-детектора,

 μ_{j}^{c} — временная характеристика полезного сигнала, — временная характеристика фона V_{ij}^{c} , V_{i}^{ϕ} — нормированные спектральные плотности полезного и фонового сигналов, — счет в i-ом энергетическом канале в j-ый момент времени временного окна

Для обнаружения сигнала источника излучения на фоне помехи можно воспользоваться различиями во временных и спектральных характеристиках полезного сигнала и фона.

Для оптимального обнаружения сигнала источника излучения на фоне помехи можно воспользоваться различиями во временных и спектральных характеристиках полезного сигнала и фона.

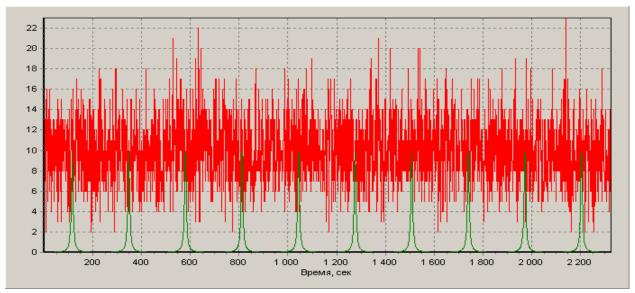
Для реализации алгоритма фильтрации полезного сигнала на фоне помехи построим следующую статистику:

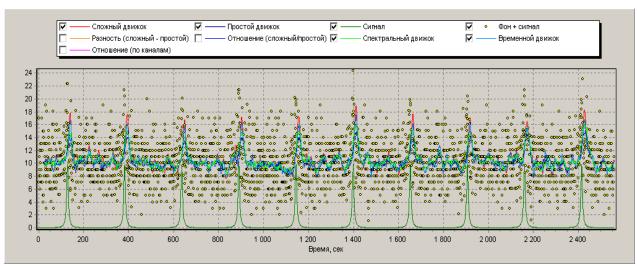
$$X = \sum_{j=1}^{K} \sum_{i=1}^{N} \frac{\mu_{j}^{c}}{\mu_{j}^{\phi}} \frac{v_{i}^{c}}{v_{i}^{\phi}} n_{ij}$$

где К – величина временного окна, в котором проводится скользящее суммирование,

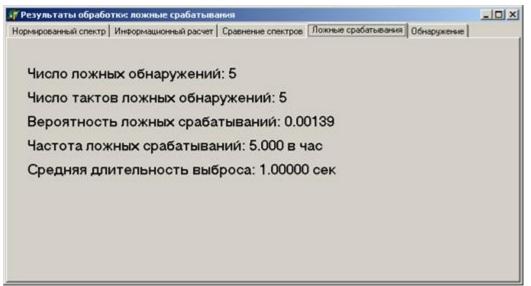
N – количество энергетических каналов гамма-детектора,

 μ_{j}^{c} — временная характеристика полезного сигнала, μ_{j}^{Φ} — временная характеристика фона v_{ij}^{c} , v_{i}^{ϕ} — нормированные спектральные плотности полезного и фонового сигналов,

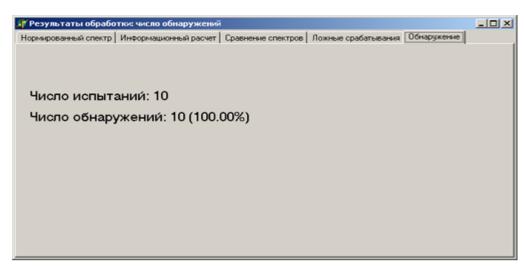

- счет в i-ом энергетическом канале в j-ый момент времени временного окна


🥡 Настройка параметров модели	X
Параметры полета	Параметры детектора
Высота, м 50 ▼	Начальный канал
Боковое удаление от ИИ, м 0	Конечный канал 63
Скорость, км/ч	Число детекторов 1
Источники	Параметры моделирования
Число источников 10	Время накопления, с 1
Нуклид Сѕ-137 ▼	Характер сигнала Случайный
Спектр источника s-137\Высота50м\0м	Номер детектора 5
Вид источника Точечный	Модель фона
Интенсивность, 1/с 100	Характер фона Случайный
Фон	Новый случ. розыгрыш Да 🔻
Спектр фона Fon\fon_468_3600.dat	Вероятность обнаружения 0.95
Интенсивность, 1/с 450	Квантиль обнаружения 3.4
Протокол результатов	
Каталог с файлами С:\Vladimir\PROJECT!	Расчет коэффициента аппроксимации формы сигнала
Конвертировать эксп. данные	Применить Выход

Программа для моделирования процессов обнаружения. Окно настройки параметров модели.



Вид сигнала и фона при отношении интенсивности сигнал/фон = 1



Окно результатов фильтрации. Решающее правило: сложный движок

Окно «Результаты обработки: ложные срабатывания»

Окно «Результаты обработки: число обнаружений»

Основные публикации и источники информации

ЛИТЕРАТУРА:

- **1.** Сухоруков А.И., Хисматов И.Ф., Новиков И.Э. Основы теории аэрокосмического радиационного мониторинга Земли. Ч. 1. Физические основы радиационного дистанционного зондирования Земли. М.: Изд-во ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина», 2011. 312 с.
- 2. Новиков И.Э. Пакет программ математического моделирования процессов переноса и регистрации гамма-излучения систем авиационного радиационного мониторинга // Научно-технический и производственный журнал "Вестник компьютерных и информационных технологий" № 8, 2013 С.16-21.
 - 3. Панин М.П. Моделирование переноса излучения. М.: МИФИ, 2008. 212 с.
- **4.** Израэль, Ю. А. Гамма-излучение радиоактивных выпадений / Ю. А. Израэль, Е. Д. Стукин Москва : Атомиздат, 1967 .— 224 с.
- **5.** Э.Н. Бакин Э.Н., Копаев В.И., Кудряшов А.С. Проблемные вопросы и перспективы развития системы воздушной радиационной, химической и биологической разведки местности и воздушного пространства [Электронный ресурс] //Электронное периодическое издание рецензируемый военнонаучный журнал «Воздушно-космические силы. Теория и практика» № 2, июнь 2017 С. 7-17. URL: http://vva.mil.ru/upload/site21/qFTBOpKEwc.pdf (дата обращения 01.08.2017).
- **6.** К. т. н. Беляев А. Н., Демченков В. П.,. Пярсинен А. Я Комплекс аппаратных средств воздушного и наземного поиска источников ионизирующих излучений и радиационной разведки / Вопросы оборонной техники. Серия 16. Технические средства противодействия терроризму. М.: НТЦ «Информтехника». 2003. Вып. 9 10 С.13-16.

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИИ ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ОПЫТНО-КОНСТРУКТОРСКИЙ ИНСТИТУТ РОБОТОТЕХНИКИ И ТЕХНИЧЕСКОЙ КИБЕРНЕТИКИ

